plot the OncoScore for a list of genes

# S3 method for class 'oncoscore.timeseries'
plot(
  x,
  gene.number = 5,
  incremental = FALSE,
  relative = FALSE,
  main = "OncoScore",
  xlab = "timepoints",
  ylab = "score",
  legend.pos = "top",
  file = NA,
  ...
)

Arguments

x

input data as result of the function compute.OncoScore

gene.number

number of genes to print

incremental

display the OncoScore increment

relative

dispaly the incrementa as relative value

main

the title

xlab

description of x asix (defaul score)

ylab

description of y asix (defaul genes)

legend.pos

Position of the legend

file

where to save the plot

...

additional parameter to pass to the lines function

Value

A plot

Examples

data(query.timepoints)
result = compute.oncoscore.timeseries(query.timepoints)
#> ### Computing oncoscore for timepoint 2012/03/01 
#> ### Processing data
#> ### Computing frequencies scores 
#> ### Estimating oncogenes
#> ### Results:
#> 	 ASXL1 -> 77.19348 
#> 	 IDH1 -> 74.24489 
#> 	 IDH2 -> 64.1649 
#> 	 SETBP1 -> 34.9485 
#> 	 TET2 -> 74.90108 
#> ### Computing oncoscore for timepoint 2013/03/01 
#> ### Processing data
#> ### Computing frequencies scores 
#> ### Estimating oncogenes
#> ### Results:
#> 	 ASXL1 -> 76.31902 
#> 	 IDH1 -> 78.71551 
#> 	 IDH2 -> 69.99559 
#> 	 SETBP1 -> 46.4559 
#> 	 TET2 -> 73.89695 
#> ### Computing oncoscore for timepoint 2014/03/01 
#> ### Processing data
#> ### Computing frequencies scores 
#> ### Estimating oncogenes
#> ### Results:
#> 	 ASXL1 -> 77.39202 
#> 	 IDH1 -> 81.07946 
#> 	 IDH2 -> 73.46995 
#> 	 SETBP1 -> 64.97398 
#> 	 TET2 -> 70.44331 
#> ### Computing oncoscore for timepoint 2015/03/01 
#> ### Processing data
#> ### Computing frequencies scores 
#> ### Estimating oncogenes
#> ### Results:
#> 	 ASXL1 -> 77.49295 
#> 	 IDH1 -> 82.55032 
#> 	 IDH2 -> 75.58179 
#> 	 SETBP1 -> 63.80208 
#> 	 TET2 -> 69.91466 
#> ### Computing oncoscore for timepoint 2016/03/01 
#> ### Processing data
#> ### Computing frequencies scores 
#> ### Estimating oncogenes
#> ### Results:
#> 	 ASXL1 -> 77.8392 
#> 	 IDH1 -> 83.11346 
#> 	 IDH2 -> 76.75356 
#> 	 SETBP1 -> 65.556 
#> 	 TET2 -> 69.81125 
plot.oncoscore.timeseries(result)